Interglacial

An Interglacial period (or alternatively interglacial) is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial has persisted since the end of the Pleistocene, about 11,400 years ago.

Contents

Interglacials during the Pleistocene

During the 2.5 million year span of the Pleistocene, numerous glacials, or significant advances of continental ice sheets in North America and Europe have occurred at intervals of approximately 40,000 to 100,000 years. These long glacial periods were separated by more temperate and shorter interglacials.

During the interglacials, one of which we are in now, the climate warmed to more or less present day temperatures and the tundra receded polewards following the ice sheets. Forests returned to areas that once supported the tundra vegetation. Traditionally, interglacials have been identified on land or in shallow epicontinental seas by their paleontology. Floral and faunal remains of species pointing to temperate climate and indicating a specific age are used to identify particular interglacials. Most used are mammalian and molluscan species, pollen and plant macro-remains (seeds and fruits). However, many other fossil remains may be helpful: insects, ostracods, foraminifera, diatoms, etc. More recently, ice cores and ocean sediment cores have provided more quantitative and better dated evidence for temperatures and total ice volumes.

Interglacials are a useful tool for geological mapping and also for anthropologists, as they can be used as a dating method for hominid fossils.[1]

Brief periods of milder climate that occurred during the last glacial are called interstadials. Most (not all) interstadials are shorter than interglacials. Interstadial climate may have been relatively warm but this is not necessarily so. Because the colder periods (stadials) have often been very dry, wetter (so not necessarily warmer) periods have been registered in the sedimentary record as interstadials as well.

The oxygen isotope ratio obtained from deep sea cores and a proxy for average global temperature, is an important source of information about changes in the climate of the earth.

Interglacial optimum

An interglacial optimum, or climatic optimum of an interglacial, is the period within an interglacial that experienced the most 'favourable' climate that occurred during that interglacial, often during the middle part. The climatic optimum of an interglacial follows, and is followed by, phases that are within the same interglacial and that experienced a less favourable climate (but nevertheless a 'better' climate than during the preceding/succeeding glacials). During an interglacial optimum, sea levels rise to their highest values, but not necessarily exactly at the same time as the climatic optimum.

In the present interglacial, the Holocene, the climatic optimum occurred during the Subboreal (5 to 2.5 ka BP, which corresponds to 3000 BC-500 BC) and Atlanticum (9 to 5 ka, which corresponds to roughly 7000 BC-3000 BC). Our current climatic phase following this climatic optimum is still within the same interglacial (the Holocene). This warm period was followed by a gradual decline until about 2,000 years ago, with another warm period until the Little Ice Age (1250-1850).

The preceding interglacial optimum occurred during the Late Pleistocene Eemian Stage, 131–114 ka. During the Eemian the climatic optimum took place during pollen zone E4 in the type area (city of Amersfoort, Netherlands). Here this zone is characterized by the expansion of Quercus (Oak), Corylus (Hazel), Taxus, Ulmus (Elm), Fraxinus (Ash), Carpinus (Hornbeam), and Picea (Spruce). During the Eemian Stage sea level was about 8 meters higher than today and the water temperature of the North Sea was c. 2°C higher than at present.

See also

References

  1. ^ Kottak, Conard Phillip (2005). Window on Humanity. New York: McGraw-Hill. ISBN 0072890282.